MiniBooNE Neutrinos at MINOS

D. Bogert, P. Shanahan, W. Smart Fermilab

H. J. Kang, S. Murgia, T. Yang, S. Wojcicki Stanford University

Fermilab All Experimenters' Meeting Feb 13, 2006

Geometry

NuMI and MiniBooNE beam lines

 α : off-axis angle to the MINOS detector = 9.13 deg

β: incident angle of MiniBooNE neutrinos on MINOS ND = 16.9 deg

Incoming direction of MB neutrinos:

zenith: 83.5 deg

azimuth: 172.8 deg

Kinematics

> Two-body decay in Lab frame:

$$E_{v} = \gamma \frac{M^{2} - m^{2}}{2M} (1 + \beta \cos \theta)$$

 E_{ν} : ν energy in Lab frame

$$\tan \alpha = \frac{\sin \theta}{\gamma(\cos \theta + \beta)}$$

α: v angle in Lab frame

M: pion or kaon mass, m: muon mass, θ : ν angle in the CM frame

For $\alpha = 159 \pm 1.2$ mrad (9.13 deg), get highly monochromatic ν beam

- \triangleright Max E_v: 1.5 GeV for K, 189 MeV for π
- \triangleright v from π decays hard to separate from noise

What can we do with MB v's?

- > Highly monoenergetic v beam:
 - Determine the energy scale
 - Better signal/background discrimination for v_e
 - Study cross sections for different interaction channels
 - Anomalous v_e production
- \triangleright For now, ν_{μ} CC only

Selection

- Search for MB neutrinos in MINOS ND cosmics data stream: between NuMI spills, data is recorded if at least 10 planes have a hit above ~1/3 pe. (4 out of 5 consecutive planes as of Dec 05)
- Aug, Sep, Oct 05 MINOS ND data has been processed so far

Timing vs Cos(angle)

- Select events with:
 - At least a track with contained vertex

(within 1 m radius around beam direction and 0.5 m to 6 m into detector)

Thanks to Steve Brice for providing the MiniBooNE spill timestamps (ACNET)

Selection - contd

- Clean up the sample by selecting tracks loosely pointing back to the MiniBooNE target $(\cos(\alpha)>0.6)$
- Correct for difference in nsec counting between MB and MINOS:

• Narrower **dt** distribution after correcting for time mismatch:

Event 1.

Event 2.

Event 3.

- •Although the track appears to be coming from the North (MB ν are from the South), the timing of this event is consistent with the MB spill.
- •This type of event is classified as a MB ν . Studies to improve the direction finding algorithm are ongoing.

Event 4.

MC Simulation

• PBEAM simulation of ν_{μ} flux from MB target at ND:

FLUX from K+ vs NU ENERGY (GeV), Z= 51.+768. m

- ν_{μ} (NC and CC) and ν_{e} interactions in the MINOS ND are simulated assuming the incoming MB direction.
- Events are generated with energy between 0.1 GeV and 4 GeV and weighted with the PBEAM flux.
- The MC is normalized to the MB POT and has to pass the online trigger requirement and offline selection as the data.
- MC trigger efficiency for 10 planes activity:

MC – Data Comparison

 \triangleright Event rate for v_{μ} CC for 3 months:

Data: 56

MC: 56.5

➤ No background subtraction in data! Under study.

Rates (data)	Aug	Sep	Oct
POT (E19)	1.75	1.5	2.76
ν_{μ} CC	15	12	29

MC – Data Comparison

- ➤ Good agreement between data and MC angular distributions
- > Need more statistics

Conclusions/Ongoing work

- We have searched for MiniBooNE neutrinos in the MINOS ND
- By applying loose track direction, containement requirements and timing consistent with the MiniBooNE spills, we find $56 v_{\mu} CC$ candidates for 3 months (Aug-Oct 05) of data taking, in good agreement with the MC prediction of 56.5 events.
- We are processing the remaining data from 2005.
- We plan to improve the flux modeling by including the MiniBooNE beam fluxes instead of PBEAM (PBEAM flux ~ 30% larger)
- We are working on improving the direction finding algorithm and cosmic background rejection.
- Hardware to trigger the ND readout on the MiniBooNE spill signal is under development.